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 Chapter 1. Introduction 

The TeREsA software is an R-based tool that was developed by the CREALP to optimize 
environmental data analysis. Originally conceived for hydro-meteorological data, some of 
the modules may be also used to process other types of dataset, such as air pollutant 
distribution or mineral concentration. TeREsA is a free software running on Windows 
(Windows Vista or later versions required).  

This Technical Manual is a theoretical basis for the different 13 analysis modules available in 
TeREsA. It should be seen as a reference for the different methodologies and calculations 
used in the software, commonly applied in the technical literature. 

 

Document structure 

This manual is composed of eight main chapters: 

1. Introduction  
2. Basic statistics 
3. Frequency analysis for extreme values 
4. Trend analysis 
5. Drought Analysis 
6. Interpolation methods 
7. Elevation sampling 
8. Aggregation 

 
For the TeREsA software utilisation, the reader can also use the TeREsA User Manual 
(Travaglini et al., 2016). 
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 Chapter 2. Basic statistics 

Basic statistics are useful to characterize time series. The following statistics are calculated 
with this module in TeREsA: 

 Minimum, maximum: the minimum and maximum values of the series. 

 Quartiles: the quartiles of a ranked set of data values are the three points that divide 
the data set into four equal groups, each group comprising a quarter of the data. The 
first quartile (Q1) is defined as the middle number between the smallest number and 
the median of the data set. The second quartile (Q2) is the median of the data. The 
third quartile (Q3) is the middle value between the median and the highest value of 
the data set. 

 Median: it is the number separating the higher half of a data series from the lower 
half. The median can be used as a measure of location when a distribution is skewed, 
when end-values are not known, or when one requires reduced importance to be 
attached to outliers, e.g., because they may be measurement errors. 

 Mean: it is a central value of a discrete set of numbers: specifically, the sum of the 
values divided by the number of values, typically denoted by �̅�. 

 Mode: it is the value that appears most often in a set of data. The mode of a 
continuous probability distribution is the value x at which its probability density 
function has its maximum value, so the mode is at the peak. 

 Standard Deviation: used to quantify the amount of variation or dispersion of the 
time series. The standard deviation 𝜎 of a random variable is the square root of its 
variance and, for a discrete variable (𝑥1, 𝑥2, … , 𝑥𝑁), it is expressed as: 

𝜎 = √
1

𝑁
∑(𝑥𝑖 − 𝜇)

2

𝑁

𝑖=1

 

where 𝜇 =
1

𝑁
∑ 𝑥𝑖
𝑁
𝑖=1  

 Coefficient of skewness: it is a measure of the asymmetry of the probability 
distribution of a real-valued random variable about its mean. Negative skew, for 
instance, indicates that the tail on the left side of the probability density function is 
longer or fatter than the right side. For a sample of 𝑁 values, a natural method of 
moments estimator of the population skewness is: 

𝑏1 =
𝑚3

𝑠3
=

1
𝑁
∑ (𝑥𝑖 − �̅�)

3𝑁
𝑖=1

[
1

𝑁 − 1
∑ (𝑥𝑖 − �̅�)2
𝑁
𝑖=1 ]

3/2
 

where �̅� is the sample mean, 𝑠 is the sample standard deviation, and the numerator 
𝑚3 is the sample third central moment. 
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 Kurtosis: it is a measure of the "tailedness" of the probability distribution of a real-
valued random variable. In a similar way to the concept of skewness, kurtosis is a 
descriptor of the shape of a probability distribution. The kurtosis is the fourth 
standardized moment defined as: 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝜇4
𝜎4

=
𝐸[(𝑋 − 𝜇)4]

(𝐸[(𝑋 − 𝜇)2])2
 

where 𝜇4 is the fourth moment about the mean and 𝜎 is the standard deviation. 
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 Chapter 3. Frequency analysis for extreme 
values 

3.1 Characterization of extreme values 

When analyzing environmental data, one of the main issues is the characterization of 
extreme values in time series using information from past events to update statistical 
representations of possible future events. Usually, we are interested in a specific extreme 
event (flood, extreme rainfall…), typically the largest of the year. When we consult only the 
maximum values within a single year, the dataset is called an annual series. Within an annual 
series, only the largest value per year is allowed, even if an additional significant peak 
occurred. 

The goal of these analyses, widely used in risk analysis, structure design, or flood protection 
territory planning, is to use hydro-meteorological data in order to characterize extreme 
events as follows: 

1. Assessing the frequency distribution of extreme events appearance, that is finding the 
relation between one characteristic variable (generally the peak flow or peak rainfall 
intensity) and its annual exceedance probability (or AEP). This may be used to predict the 
possible magnitude of a variable over a certain time period and/or to estimate the 
frequency with which an event of a certain magnitude may occur. 

2. Calculating the main dimensional aspects of the hydrograph/hyetograph corresponding 
with a given event: rising limb, recession (or falling) limb, peak value, lag time, time to 
peak. 

3.2 Frequency distribution 

Frequency analyses involve using observed annual extreme data to calculate statistical 
information such as mean values, standard deviations, skewness, and recurrence intervals. 
These statistical data are then used to construct frequency distributions, which are graphs 
and tables that tell the likelihood of maximum variables as a function of recurrence interval 
or exceedance probability. 

Frequency distributions can take on many forms according to the equations used to carry 
out the statistical analysis. Let 𝑋 denote a random variable, and 𝑥 a possible value of 𝑋. For a 
random variable 𝑋, its cumulative distribution function (cdf), denoted 𝐹𝑋(𝑥), is the 
probability the random variable 𝑋 is less than or equal to 𝑥: 

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) 

where 𝐹𝑋(𝑥) is the non-exceedance probability for the value 𝑥. 

The probability density function (pdf) describes the relative likelihood that a continuous 
random variable 𝑋 takes on different values, and is the derivative of the cdf: 
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𝑓𝑋(𝑥) =
𝑑𝐹𝑋(𝑥)

𝑑𝑥
 

In hydrology the percentiles or quantiles of a distribution are often used as design events. 
The 𝑝th quantile 𝑥𝑝 is the value with cumulative probability 𝑝: 

𝐹𝑋(𝑥𝑝) = 𝑝 

The annual exceedance probability (or 𝐴𝐸𝑃) is then calculated as the probability with which 
an extreme value 𝑥𝑝 will be exceeded: 

𝐴𝐸𝑃 = 1 − 𝑝 

The return period (denoted 𝑇) is often specified rather than the exceedance probability. In 
general, 𝑥𝑝 is the 𝑇-year flood (or rainfall) for: 

𝑇 =
1

1 − 𝑝
=

1

𝐴𝐸𝑃
 

If extreme events are independent from year to year, the probability that the first 
exceedance of level 𝑥𝑝 occurs in year 𝑘 is the probability of (𝑘 − 1) years without an 

exceedance followed by a year in which the value of 𝑋 exceeds 𝑥𝑝: 

𝑃(𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑘 𝑦𝑒𝑎𝑟𝑠 𝑢𝑛𝑖𝑡𝑙 𝑋 ≥ 𝑥𝑝) = 𝑝𝑘−1. (1 − 𝑝) 

The probability that 𝑥𝑝 is exceeded in a 𝐿-year period is: 

𝑝𝐿 = 1 − (1 −
1

𝑇
)
𝐿

 

In hydrology we often speak of the 20-year flood or the 1000-year rainfall, rather than 
events exceeded with probabilities of 5% or 0.1% in any year. Return period may be 
incorrectly understood to mean that one and only one 𝑇-year event should occur every 𝑇 
years. Actually the probability of the 𝑇-year event being exceeded is 1/𝑇 in every year: on 
average one event greater than the 𝑇-year level occurs in a 𝑇-year period. Usually, return 
periods include the 2–, 10–, 25–, 50–, 100–, and even 500–year events. 

The common frequency distributions are: 

 Normal: this distribution is widely used in hydrology, as well as in other civil 
engineering applications. It is symmetrical about the mean and is therefore only 
suitable for data where the skewness coefficient g is equal to or close to zero. 

 Lognormal: while hydrological data are usually strongly skewed, the logarithms of the 
data have a near-symmetrical distribution. The log-normal distribution is a normal 
distribution using the logarithms of the data. 

 Gumbel (EV1): the extreme value Type 1 distribution has a constant positive 
skewness and is commonly used for hydrological analyses. The maxima from any 
distribution that converges on an exponential function at the positive tail (normal, 
Chi-square, lognormal, etc.) will have a Gumbel distribution if the basic assumptions 
are satisfied. 

 Weibull (EV3): the Weibull distribution is negatively skewed. 
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 Generalized Extreme Value (GEV): the general extreme value distribution is the 
generalized form of the extreme value distributions. It is a family of three sub-types 
of distribution, which are classified according to the value of the skewness coefficient 
𝑔. 

 Exponential: This is the simplest of the one-tailed distributions and is based on the 
equation 𝑦 = 𝑒𝑥 which is equal to 1 when 𝑥 = 0 and decays rapidly to 0.006 when 
𝑥 = 5. It is seldom used directly in hydrological analyses, but like the gamma 
distribution, it is incorporated in the more complex models derived from it. 

 Pearson type III: this is essentially a gamma distribution (distribution of the sum of a 
number of independent, exponentially distributed random variables), but with the 
mean displaced by a constant 𝑥0 from the origin. It includes the normal distribution 
as a special case when the skew is zero. 

 log-Pearson type III: as with the lognormal distribution, this is the distribution of the 
logarithms of the values, and is the form in which the Pearson type III distribution is 
most commonly used in hydrological analyses. 

Table 1 provides a summary of the pdf or cdf of these distributions, and their ranges of 
applicability. For more information on these distributions please refer to WMO (World 
Meteorological Organization, 2008) or to the vast related bibliography. 

Distribution pdf and/or cdf Range 

Normal 𝑓𝑋(𝑥) =
1

√2𝜋𝜎𝑋2
∗ 𝑒𝑥𝑝 [−

(𝑥 − 𝜇𝑋)
2

2𝜎𝑋2
] −∞ < 𝑥 < ∞ 

Lognormal 

𝑓𝑋(𝑥) =
1

𝑥√2𝜋𝜎𝑌2
∗ 𝑒𝑥𝑝 [−

(𝑥 − 𝜇𝑌)
2

2𝜎𝑌2
] 

where 𝑌 = ln (𝑋) 

𝑥 > 0 

Gumbel 

𝑓𝑋(𝑥) =
1

𝛼
𝑒𝑥𝑝 [−

𝑥 − 𝜉

𝛼
− 𝑒𝑥𝑝 (−

𝑥 − 𝜉

𝛼
)] 

𝐹𝑋(𝑥) = 𝑒𝑥𝑝 [−𝑒𝑥𝑝 (−
𝑥 − 𝜉

𝛼
)] 

−∞ < 𝑥 < ∞ 

Weibull 
𝑓𝑋(𝑥) = (

𝜅

𝛼
) (
𝑥

𝛼
)
𝜅−1

𝑒𝑥𝑝 [− (
𝑥

𝛼
)
𝜅

] 

𝐹𝑋(𝑥) = 1 − 𝑒𝑥𝑝[−(𝑥/𝛼)𝜅] 

𝑥 > 0 
𝛼, 𝜅 > 0 

GEV 𝐹𝑋(𝑥) = 𝑒𝑥𝑝 {− [1 −
𝜅(𝑥 − 𝜅)

𝛼
]

1/𝜅

} 

(𝜎𝑋
2 exists for 𝜅 > −0.5) 

if 𝜅 > 0, 𝑥 < (𝜉 +
𝛼

𝜅
) 

if 𝜅 < 0, 𝑥 > (𝜉 +
𝛼

𝜅
) 

Exponential 
𝑓𝑋(𝑥) = 𝛽. 𝑒𝑥𝑝[−𝛽(𝑥 − 𝜉)] 

𝐹𝑋(𝑥) = 1 − exp (−𝛽(𝑥 − 𝜉)) 
𝑥 > 𝜉 for 𝛽 > 0 
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Distribution pdf and/or cdf Range 

Pearson III 

𝑓𝑋(𝑥) = |𝛽|. [𝛽. (𝑥 − 𝜉)]
𝛼−1.

𝑒𝑥𝑝[−𝛽(𝑥 − 𝜉)]

Γ(𝛼)
 

Γ(𝛼) is the gamma function 
(for 𝛽 > 0 and 𝜉 = 0: 𝛾𝑥 = 2𝐶𝑉𝑥) 

𝛼 > 0 

for 𝛽 > 0: 𝑥 > 𝜉 

for 𝛽 < 0: 𝑥 < 𝜉 

log-Pearson III 

𝑓𝑋(𝑥) = |𝛽|. {𝛽. [𝑙𝑛(𝑥)

− 𝜉]}𝛼−1.
𝑒𝑥𝑝{−𝛽[𝑙𝑛(𝑥) − 𝜉]}

𝑥. Γ(𝛼)
 

 

for 𝛽 < 0: 0 < 𝑥 <
exp (𝜉) 

for 𝛽 > 0: 𝑒𝑥𝑝(𝜉) < 𝑥 <
∞ 

Table 1. Commonly used Frequency Distributions in hydrology 

 

3.3 Parameters estimation 

Once the frequency distribution (or distributions) has been selected, the next task is to 
estimate their parameters by fitting this distribution to the datasets of the annual maximum 
values. It is then possible to evaluate the required quantiles using the fitted model 
equations. 

Several general approaches are available for estimating the parameters of a distribution. 
Traditionally, the method of ordinary moments (MOM) has been popular in hydrology even 
though it has been recognized as statistically inefficient in comparison to the method of 
maximum likelihood (ML). The method of probability-weighted moments (PWMs), 
introduced by Greenwood, et al. (1979) is, in many cases, convenient to apply, and it has 
been found by Hosking, et al. (1985) to be comparable with ML in its statistical properties for 
sample sizes which are normally encountered in hydrology. 

A more recent methodology employing L-moment statistics (Hosking, 1990) shows 
considerable improvement over the more conventional maximum likelihood or method at 
moments techniques. 

According to their availability and their convenience in the functions used in TeREsA, the 
corresponding parameters estimation methods chosen for each frequency distribution have 
been selected and are shown in Table 2. 

 

Distribution Method 

Normal Maximum Likelihood 

Lognormal Maximum Likelihood 

Gumbel Maximum Likelihood 

In TeREsA, the Weibull distribution has been used for the determination of the empirical 
distribution based exclusively on data. 
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Distribution Method 

GEV Probability weighted moments 

Exponential Method of ordinary moments 

Pearson III Maximum Likelihood 

log-Pearson III Maximum Likelihood 

Table 2. Parameter estimation methods chosen for each frequency distribution in TeREsA 

Once the distribution is chosen and its parameters are defined, it is possible to estimate the 
quantile –or annual extreme value– for any given return period using the equation shown in 
Table 1 or graphically. 

3.4 Selecting a distribution – Goodness of fit tests 

After the dataset of empirical information has been adjusted by one (or several) frequency 
distribution, it is needed to describe how well it fits the observations by assessing the 
discrepancy between observed values and the values expected under the model in question. 

An initial evaluation of the adequacy of a fitted probability distribution is best done by 
generating a probability plot of the observations and the distributions. Such a plot serves 
both as an informative visual display of the data and a check to determine whether the fitted 
distribution is consistent with the data. 

A more objective procedure is the use of analytical goodness-of-fit criteria, useful to 
determine whether it is reasonable to conclude that a given set of observations was drawn 
from a particular family of distributions, or whether a particular departure of the data from a 
model is statistically significant (Stedinger et al., 1993). Several rigorous statistical tests are 
available, some of which are described below. 

Kolmogorov-Smirnov goodness-of-fit test 

The non-parametric Kolmogorov–Smirnov test provides bounds within which every 
observation on a probability plot should lie if the sample is actually drawn from the assumed 
distribution (Kottegoda and Rosso, 1997). It is one of the most useful and general methods 
for comparing two samples, as it is sensitive to differences in both location and shape of the 
empirical cumulative distribution functions (ECDF) of the two samples. 

The test statistic, in a two-sided test, is the maximum absolute difference (that is, usually the 
vertical distance) between the empirical and hypothetical CDFs (Figure 1). 
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Figure 1. Example of the Kolmogorov-Smirnov statistic. Orange line is CDF, black line is the ECDF, and 

the red arrow is the Kolmogorov-Smirnov statistic. 

For a continuous variate 𝑋 let 𝑥(1), 𝑥(2), … 𝑥(𝑛) represent the order statistics of a sample of 

size 𝑛, that is, the values arranged in increasing order. The empirical or sample distribution 
function 𝐹𝑛(𝑥) is a step function. This gives the proportion of values not exceeding 𝑥 and is 
defined as: 

𝐹𝑛(𝑥) = 0,      𝑓𝑜𝑟 𝑥 < 𝑥(1), 

=
𝑘

𝑛
,     𝑓𝑜𝑟 𝑥(𝑘)  ≤ 𝑥 ≤ 𝑥(𝑘+1); 𝑘 = 1, 2, … , 𝑛 − 2, 

= 1,     𝑓𝑜𝑟 𝑥 ≥ 𝑥(𝑛)  

Let 𝐹0(𝑥) denote a completely specified theoretical continuous CDF. The null hypothesis 𝐻0 
is that the true CDF of 𝑋 is the same as 𝐹0(𝑥). That is, under the null hypothesis  

lim
𝑛→∞

𝑃𝑟[𝐹𝑛(𝑥) = 𝐹0(𝑥) ] = 1 

The test criterion is the maximum absolute difference between 𝐹𝑛(𝑥) and 𝐹0(𝑥), formally 
defined as 

𝐷𝑛 = sup
𝑥
|𝐹𝑛(𝑥) − 𝐹0(𝑥) | 

where 𝑠𝑢𝑝𝑥 is the supremum of the set of distances. 

The foregoing measure of deviation is for a two-sided test which is commonly used. If for 
some reason a one-sided test is required to test whether, for instance, 𝐹𝑛(𝑥) > 𝐹0(𝑥), then 
the statistic is modified as 

𝐷𝑛
+ = sup

𝑥
[𝐹𝑛(𝑥) − 𝐹0(𝑥) ] 

Likewise one can define the statistic 𝐷𝑛
− . One of the advantages of the test is that the test 

statistic is distribution-free. For large values of 𝑛, Smirnov (1948) gives the limiting 

distribution of √𝑛 𝐷𝑛 as 
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lim
𝑛→∞

[𝑃𝑟(√𝑛 𝐷𝑛 ≤ 𝑧)] = (
√2𝜋

𝑧
)∑𝑒𝑥𝑝 [−(2𝑘 − 1)2

𝜋2

(8𝑧2)
]

∞

𝑘=1

 

Thus, one can compute that the critical values  𝐷𝑛,𝛼 for large samples, say 𝑛 > 35, are 

1.3581/√𝑛 and 1.6276/√𝑛 for 𝛼 = 0.05 and 0.01, that is, for probabilities of 0.95 and 0.99 
respectively.  

The test is applied on the assumption that 𝐹0(𝑥) denotes a completely specified theoretical 
continuous CDF, that is with known parameters. 

However, various studies have found that, even in this corrected form, the test is less 
powerful for testing normality than the Anderson–Darling test, for instance. 

Anderson-Darling goodness-of-fit test 

The Anderson-Darling test is a modification of the Kolmogorov-Smirnov test, giving more 
weight to the tails. This test is devised to give heavier weighting to the tails of a distribution 
where unexpectedly high or low values, called outliers, are sometimes located. This is made 
possible if one divides the difference between the empirical CDF 𝐹𝑛(𝑥) and theoretical CDF 
𝐹0(𝑥) to be tested (that is, (𝐹𝑛(𝑥) − 𝐹0(𝑥)),which approaches zero in each tail) by 

√𝐹0(𝑥) [1 − 𝐹0(𝑥)] (Anderson and Darling, 1954). After squaring the test statistic becomes 

𝐴2 = ∫[𝐹𝑛(𝑥) − 𝐹0(𝑥)]
2 ∙

1

𝐹0(𝑥)[1 − 𝐹0(𝑥)]
∙ 𝐹0(𝑥) ∙ 𝑑𝑥

∞

−∞

 

It is shown that this is equivalent to 

𝐴2 = −𝑛 −∑
[2𝑖 − 1][𝑙𝑛{𝐹0(𝑥(𝑖))} + 𝑙𝑛{1 − 𝐹0(𝑥(𝑛−𝑖+1)}]

𝑛

𝑛

𝑖=1

 

where 𝑥(1), 𝑥(2), … 𝑥(𝑛) are the observations ordered in ascending order. Because the CDFs 

are in the range 0–1, their logarithms are negative and hence the summation on the right-
hand side of the previous equation is negative. The absolute value of the summation is also 
greater than 𝑛, thus resulting in a positive value of 𝐴2. 

For large values of the test statistic 𝐴2, the null hypothesis that 𝐹𝑛(𝑥) and 𝐹𝑛0(𝑥) have the 
same distribution is rejected. 

Chi-squared goodness-of-fit test 

The chi-squared test (also referred to as 𝜒2 test or chi-square test) is a test of significance 
based on the chi-squared statistic with CDF given by: 

𝐹(𝜒2) =
1

2
∫
(
𝑡
2)
(𝜈/2)−1 ∙ 𝑒−𝑡/2

𝛤(𝜈/2)
𝑑𝑡

𝜒2

0

 

The statistic is derived by the sum of squares of independent standard normal variates. The 
main steps are the ranking of a sample of data, division into a number of classes depending 
on the magnitudes and the range, and the fitting of a probability distribution. The statistic 
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comes from the weighted sum of squared differences between the observed and theoretical 
frequencies. 

The observed frequencies 𝑂𝑖 and expected frequencies 𝐸𝑖 are found by multiplying the 
relative frequencies, for each class 𝑖 from a total of 𝑙 classes, by the sample size 𝑛. To test 
whether the differences between the observed and expected frequencies are significant, we 
use the statistic 

𝑋2 =∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝑙

𝑖=1

 

A large value of this statistic indicates a poor fit; so we need to know what values are 
acceptable. The sampling distribution of 𝑋2 tends, as 𝑛 approaches infinity, to a 𝜒𝜈

2 v 
distribution, where 𝜈 = 𝑙 − 𝑘 − 1 represents the degrees of freedom and 𝑘 is the number of 
parameters estimated from the same data used for the test. 

The test gives satisfactory results when there is no significant dependence between the 
variables, if 𝑛 ≥ 50 and for each class 𝑖, 𝑛𝑖 ≥ 5. It is versatile and does not require one to 
know the values of the parameters before the test, as in the classical form of the 
Kolmogorov-Smirnov goodness-of-fit test, 

For the application of the chi-squared test to a continuous variable, the expected 
frequencies 𝐸𝑖 are the products of the total sample size 𝑛 and the areas under the pdf, as 
specified by the null hypothesis, between the bounds of each class 𝑖. 

Although this is an attractive test, the choice of classes will affect the power of the test. 
Furthermore, it is not the best approach to have equal class intervals for the purpose. An 
equitable allocation of the frequencies is obtained if we divide the total area under the pdf 
into equal areas and hence find the class boundaries. This is the equal-probabilities method 
of constructing classes as proposed by Mann and Wald (1942) and clarified by Williams 
(1950) who also suggest for a level of significance 𝛼 = 0.05, values of classes 𝑙 = 39, 35, 30, 
23, 15, 12, and 9 for total sample sizes 𝑛 =2000, 1500, 1000, 500, 200, 100, and 50, 
respectively. For other values of n and α, we use the formula 

𝑙 = 2 [
2(𝑛 − 1)2

𝑧𝛼2
]

2

 

where 𝑧𝛼 is the value which a standard normal variate exceeds with probability 𝛼. Also 
𝑛/𝑙 ≥ 5; although this requirement is relaxed somewhat by recent authors, too many 
classes tend to reduce the power of the test. 

The Mean Square Prediction Error 

The Mean Square Prediction Error is a simple but effective indicator of the goodness-of-fit of 
a distribution. It is calculated as the expected value of the squared difference between the 
fitted values and the (unobservable) distribution: 

𝑀𝑆𝑃𝐸 =
1

𝑛
∑(𝑥𝑖 − �̂�𝑖)

2

𝑛

𝑖=1
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where 𝑛 is the size of the sample, 𝑥𝑖  are the observations and �̂�𝑖  the predictions made with 
the probability distribution. 

 

 

For the validation of the fitted parameters, TeREsA presents a report for each station 
including: 

- The probability plot of the observations vs the distributions. 
- A table containing the values of the parameters, the Mean Square Prediction 

Error, and the statistic and the p-value of the Kolmogorov-Smirnov goodness-of-
fit tests. 
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 Chapter 4. Trend analysis 

Among the methodologies to analyze trends in times series, the following methods are the 
most common: Linear regression, Mann-Kendall test, Spearman’s rho test, Cox Stuart test, 
Pettitt test and Sen’s non parametric estimator of slope. 

For this module, the trend analyses are applied to the annual means of each time series (or 
seasonal means), so the white noise of the time series can be reduced and their 
autoregressive component avoided without using any pre-whitening method (von Storch, 
1999). 

4.1 Linear regression 

Linear regression attempts to model the relationship between two variables (usually data 
versus time) by fitting a linear equation to observed data. 

If plots of data versus time suggest a simple linear increase or decrease over time, a linear 
regression of the variable against time may be fit to the data.  

𝑋 = 𝛽0 + 𝛽1 ∗ 𝑡 + 𝜀 

The most common method for fitting a regression line is the method of least-squares. This 
method calculates the best-fitting line for the observed data by minimizing the sum of the 
squares of the vertical deviations from each data point to the line (if a point lies on the fitted 
line exactly, then its vertical deviation is 0). 

The null hypothesis is that the slope coefficient 𝛽1  =  0. Regression makes stronger 
assumptions about the distribution of X over time than does Mann-Kendall. It must be 
checked for normality of residuals, constant variance and linearity of the relationship (best 
done with residuals plots). If X is not linear over time, a transformation will likely be 
necessary. If all is ok, the t-statistic on 𝛽1 is tested to determine if it is significantly different 
from 0. If the slope is nonzero, the null hypothesis of zero slope over time is rejected, and 
we conclude that there is a linear trend in Y over time. 

4.2 Mann-Kendall test 

The purpose of the Mann–Kendall test (Gilbert, 1987; Kendall, 1975; Mann, 1945) is to 
statistically assess if there is a monotonic upward or downward trend of the variable of 
interest over time. This test can be used in place of a parametric linear regression analysis, 
which requires that the residuals from the fitted regression line be normally distributed; an 
assumption not required by the Mann-Kendall test as it is a non-parametric (distribution-
free) test. 

Commonly used when analyzing various types of environmental data (Hipel and McLeod, 
1994; McLeod et al., 1991), the Mann-Kendall test is best viewed as an exploratory analysis 
and is most appropriately used to identify stations where changes are significant or of large 
magnitude and to quantify these findings (Hirsch et al., 1982). 
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The null hypothesis 𝐻0 is that a sample of data ordered chronologically is independent and 
identically distributed: 

𝐻0:      𝑃𝑟𝑜𝑏 [𝑌𝑗 > 𝑌𝑖] = 0.5,   𝑤ℎ𝑒𝑟𝑒 𝑇𝑗 > 𝑇𝑖 

𝐻1:      𝑃𝑟𝑜𝑏 [𝑌𝑗 > 𝑌𝑖] ≠ 0.5  (2 − 𝑠𝑖𝑑𝑒𝑑 𝑡𝑒𝑠𝑡) 

The Mann-Kendall test statistic 𝑆 is defined as follows (Yue et al., 2002b): 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑗)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 

where: 

𝑠𝑖𝑔𝑛(𝑥) = {

+1   𝑖𝑓 𝑥 > 0
0   𝑖𝑓 𝑥 = 0
−1  𝑖𝑓 𝑥 < 0

 

The Mann-Kendall test statistic 𝑍 is estimated by the following formula as: 

𝑍 =

{
 
 

 
 
𝑆 − 1

𝜎
   𝑆 > 0

0           𝑆 = 0
𝑆 + 1

𝜎
   𝑆 < 0

 

where the variance 𝜎2 is defined as: 

𝜎2 =
[𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑗 . (𝑡𝑗 − 1)(2𝑡𝑗 − 5)

𝑚
𝑗=1 ]

18
⁄  

Here,  𝑛 is the length of the time series 𝑥1, . . , 𝑥𝑛; 

𝑥𝑖  and 𝑥𝑘 are the data values in years 𝑖 and 𝑘; 

𝑚 is the number of tied groups; 

𝑡𝑗 is the number of data values in the 𝑗𝑡ℎ group. 

A positive (negative) value of 𝑍 indicates an upward (downward) monotone trend for the 
test time series. The test statistic 𝑍 is used a measure of significance of trend. This test 
statistic is used to test the null hypothesis, 𝐻0. If |𝑍| > 𝑍𝛼/2, where α represents the chosen 

significance level1, then the null hypothesis is invalid implying that the trend is significant. 

As a matter of good scientific practice, a significance level is chosen before data collection 
and is often set to 0.05 (5%) (Craparo, 2007), although other significance levels (e.g., 0.01) 
may be used, depending on the field of study (Sproull, 2002). 

                                                      

 

 
1
 The significance level (denoted α, alpha) is the probability of rejecting the null hypothesis given that it is true. 
𝑍𝛼/2 is obtained from the standard normal cumulative distribution tables (eg: 5% with 𝑍0.025  =  1.96) 
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This test is particularly useful since missing values are allowed and the data need not 
conform to any particular distribution. Also, data reported as trace or less than the detection 
limit can be used by assigning them a common value that is smaller than the smallest 
measured value in the data set. 

4.3 Spearman’s rho test 

Spearman’s rho (Lehmann and D’Abrera, 2006; Sneyers, 1990) test is another rank-based 
nonparametric method used for trend analysis and is similar to the Mann-Kendall method. 
The Spearman’s rho test is a simple method with uniform power for linear and non-linear 
trends and is commonly used to verify the absence of trends. 
In this test, the null hypothesis (𝐻0) is that all the data in the time series are independent 
and identically distributed, while the alternative hypothesis (𝐻1) is that increasing or 
decreasing trends exist (Yue et al., 2002a). The SR test statistic D and the standardized test 
statistic ZSR are expressed as follows: 

𝐷 = 1 −
6 ∑ (𝑅𝑖 − 𝑖)

2𝑛
𝑖=1

𝑛(𝑛2 − 1)
 

𝑍 = 𝐷 ∗ √
𝑛 − 2

1 − 𝐷2
 

where 𝑅𝑖 is the rank of observation 𝑋𝑖 in the time series and 𝑛 is the length of the time 
series. Positive values of 𝑍 indicate upward trends, while negative 𝑍 indicate downward 
trends in the time series. When |𝑍| > 𝑡(𝑛−2,1−𝛼/2), the null hypothesis is rejected and a 

significant trend exists in the time series. 𝑡(𝑛−2,1−𝛼/2) is the critical value of 𝑡 from the t-

student table, for 𝛼 significant level. 

4.4 Cox Stuart test 

The Cox-Stuart test (Cox and Stuart, 1955) is a modified sign test. It is defined as a little 
powerful test (power equal to 0.78), but very robust for the trend analysis. It is therefore 
applicable to a wide variety of situations, to get an idea of the evolution of values obtained. 
The proposed method is based on the binomial distribution. 

Given a set of ordered observations 𝑋1, 𝑋2, . . . , 𝑋𝑛. We group the variables into pairs 
(𝑋1, 𝑋1+𝑐), (𝑋2, 𝑋2+𝑐), . . . , (𝑋𝑛−𝑐, 𝑋𝑛), where: 

𝑐 = {

𝑛

2
   𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

(𝑛 + 1)

2
   𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

 

If there is an upward trend, then: 

𝑃(𝑋𝑖 < 𝑋𝑖+𝑐) > 𝑃(𝑋𝑖 > 𝑋𝑖+𝑐)   for all 𝑖 

Define 
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𝑠𝑖𝑔𝑛(𝑋𝑖, 𝑋𝑖+𝑐) = {

+1   𝑖𝑓 𝑋𝑖 < 𝑋𝑖+𝑐
0   𝑖𝑓 𝑋𝑖 = 𝑋𝑖+𝑐
−1   𝑖𝑓 𝑋𝑖 > 𝑋𝑖+𝑐

 

We can now apply the sign test to test if 𝑃(𝑋𝑖 < 𝑋𝑖 + 𝑐)  =  𝑃(𝑋𝑖 > 𝑋𝑖 + 𝑐), or equivalently 
if 𝑃(+)  =  𝑃(−). 

4.5 Pettitt test 

The approach after Pettitt (1979) is commonly applied to detect a single change-point in 
hydrological series or climate series with continuous data. 

It tests the null hypothesis 𝐻0: The T variables follow one or more distributions that have the 
same location parameter (no change), against the alternative: a change point exists. The 
non-parametric statistic is defined as: 

𝐾𝑇 = 𝑚𝑎𝑥|𝑈𝑡,𝑇| 

where: 

𝑈𝑡,𝑇 = ∑ ∑ 𝑠𝑔𝑛 (𝑋𝑖 − 𝑋𝑗)

𝑇

𝑗=𝑡+1

𝑡

𝑖=1

 

The change-point of the series is located at 𝐾𝑇, provided that the statistic is significant. The 
significance probability of 𝐾𝑇 is approximated for 𝑝 ≤  𝛼 with: 

𝑝 = 2 ∗ 𝑒𝑥𝑝 (
−6 𝐾𝑇

2

𝑇3 + 𝑇2
) 

α being the significance level of the test. 

4.6 Sen’s non parametric estimator of slope 

If a linear trend is present, the true slope (change per unit time) may be estimated by 
computing the Sen’s slope (Sen, 1968; Theil, 1992). This method chooses the median slope 
among all lines through pairs of two-dimensional sample points. 

Closely related to the Mann-Kendall test, it can be computed efficiently, and is insensitive to 
outliers; it can be significantly more accurate than non-robust simple linear regression for 
skewed and heteroskedastic data, and competes well against non-robust least squares even 
for normally distributed data in terms of statistical power (Wilcox, 2001). 

The Theil–Sen estimator of a set of two-dimensional points (𝑥𝑖 , 𝑦𝑖) is the median 𝑚 of the 

slopes (𝑦𝑗 − 𝑦𝑖)/ (𝑥𝑗 − 𝑥𝑖) determined by all pairs of sample points. Once the slope 𝑚 has 

been determined, one may determine a line from the sample points by setting the 𝑦-
intercept 𝑏 to be the median of the values 𝑦𝑖 = 𝑚 ∗ 𝑥𝑖 . 

A confidence interval for the slope estimate may be determined as the interval containing 
the middle (1 − 𝛼) of the slopes of lines determined by pairs of points, and may be 
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estimated quickly by sampling pairs of points and determining the (1 − 𝛼) ∗ 100 interval (in 
%) of the sampled slopes. 
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 Chapter 5. Drought Analysis 

Drought is a natural phenomenon that results from persistent lower levels of precipitations 
than what is considered normal, generally affecting larger areas than other hazards. When 
this phenomenon extends over a season or a longer period of time, precipitation is 
insufficient to meet the demands of human activities and the environment (World 
Meteorological Organization, 2012) and shortages of water availability may turn into disaster 
events. 

5.1 Drought classification 

Droughts are commonly classified in three main categories (Barua et al., 2011; Zargar et al., 
2011): 

- Meteorological drought: it is expressed solely as the level of dryness measured in 
rainfall deficiency (Keyantash and Dracup, 2002) as the precipitation’s departure 
from normal over some period of time, reflecting one of the primary causes of a 
drought. 

- Agricultural drought: it is associated with a shortage of available water for plant 
growth, and is assessed as insufficient soil moisture to replace evapotranspirative 
losses (World Meteorological Organization, 1975). 

- Hydrological drought: it is associated with the effects of periods of precipitation 
(including snowfall) shortfalls on surface or subsurface water supply (i.e., streamflow, 
reservoir and lake levels, groundwater). Hydrological droughts are usually out of 
phase with or lag the occurrence of meteorological and agricultural droughts: it takes 
longer for precipitation deficiencies to show up in components of the hydrological 
system. 

A supplemental division may be adopted: the socio-economical droughts (Heim, 2002; 
Wilhite and Glantz, 1985), as a consequence of the other types. This category occurs when 
physical water shortages start to affect the health, well-being, and quality of life of people 
and/or when the drought starts to affect the supply and demand of economic products such 
as water, fish production, and hydroelectric power generation (Barua et al., 2011). 

The relationship between the different drought categories can be illustrated as in Figure 2. A 
meteorological drought in terms of lack of precipitation is the primary cause of a drought. It 
usually first leads to an agricultural drought due to lack of soil water. If precipitation 
deficiencies continue a hydrological drought in terms of surface water deficits develops. The 
groundwater is usually the last to be affected, but also the last to return to normal water 
levels. 



TeREsA 

 

 

Technical Manual   Page 23/38 

 
Figure 2. Flow chart illustrating the progression of drought, and the relationship between 

Meteorological, Agricultural, and Hydrological Drought (source: National Drought Mitigation Centre, 
USA). 

The drought module of TeREsA is focused on the calculation and exploitation of 
meteorological drought indices, described hereafter: Percentage of Normal precipitation 
(PN), Standardized Precipitation Index (SPI), Rainfall Anomaly Index (RAI) and Deciles. 

 

5.2 Drought indices 

The definition of meteorological drought indices rests basically upon the comparison of a 
given weather variable (in this case the precipitation) to its normal value (the definition of 
“normality” may vary from index to index), resulting in a single number. This allows 
assimilating large data into a comprehensible picture for drought analysis and thus 
facilitating decision making. 

Drought indices are calculated for specific stations and results are in point data format. 
These results serve their purposes, but it is often in map form that the data best 
communicate a message based on a geographic context to the decision-maker trying to 
understand drought severity and spatial extent (World Meteorological Organization, 2012). 

A variety of techniques can be used to generate a continuous map of meteorological drought 
with information between stations. One such technique generates an interpolated surface of 
estimated values at locations between sites based on mathematical relationships of the 
indicator or index between the original point data. Often this produces a map that appears 

All indices require a reference period used to define what is considered the “normal 
precipitations”. TeREsA is able to set this period by setting its initial and end years or by 
defining a “moving” period of n years previous to the date we are calculating the index. 
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“natural”, but is still based on the data from specific points and is only as accurate as the 
original data and the interpolation technique. No single interpolation method can be applied 
to all situations, and the most commonly used interpolation techniques include Kriging and 
Inverse Distance Weighting (IDW). 

The Kriging method, which has its origins in geological applications and the mining industry, 
assumes that there is a relationship between points that is non-random and changes over 
space. Inverse Distance Weighting (IDW) is used when the data points are scattered but 
dense enough to represent local variations. The data, as the name implies, are weighted to 
favour data closer in proximity to the point being processed. 

Percent of Normal Precipitation (PN) 

The percent of normal precipitation is one of the simplest measurements of rainfall for a 
location. Analyses using percent of normal are very effective when used for a single region or 
a single season. 

It is calculated by dividing actual precipitation by normal precipitation (typically considered 
to be a 30-year mean) and multiplying by 100%. This can be calculated for a variety of time 
scales, including monthly, seasonal or annual. For PN values over 100%, the precipitation is 
higher than the average precipitation (and viceversa): the higher PN value, the wetter the 
considered period is. 

One of the disadvantages of using the percent of normal precipitation is that the mean, or 
average, precipitation is often not the same as the median precipitation, which is the value 
exceeded by 50% of the precipitation occurrences in a long-term climate record. The reason 
for this is that precipitation on monthly or seasonal scales does not have a normal 
distribution. Use of the percent of normal comparison implies a normal distribution where 
the mean and median are considered being the same.  

Standardized Precipitation Index (SPI) 

The Standardized Precipitation Index (SPI) was formulated by Mckee, Doesken and Kleist in 
1993 to quantify the precipitation deficit for multiple time scales. 

It is computed by considering the precipitation anomaly with respect to the mean value for a 
given time scale, divided by its standard deviation. The precipitation is not a normal 
distribution, at least for time-scales less than one year. Therefore, the variable is adjusted so 
that the SPI is a Gaussian distribution with zero mean and unit variance. 

The index calculation is based on the following expressions: 

𝑆𝑃𝐼 = +(𝑡 −
𝑐0 + 𝑐1 ∗ 𝑡 + 𝑐2 ∗ 𝑡

2

1 + 𝑑1 ∗ 𝑡 + 𝑑2 ∗ 𝑡2 + 𝑑3 ∗ 𝑡3
) ,

𝑡 = √𝑙𝑛 (
1

𝐻(𝑃)2
)     𝑓𝑜𝑟  0 < 𝐻(𝑃) < 0.5 
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𝑆𝑃𝐼 = −(𝑡 −
𝑐0 + 𝑐1 ∗ 𝑡 + 𝑐2 ∗ 𝑡

2

1 + 𝑑1 ∗ 𝑡 + 𝑑2 ∗ 𝑡2 + 𝑑3 ∗ 𝑡3
) ,

𝑡 = √𝑙𝑛 (
1

(1 − 𝐻(𝑃))
2)     𝑓𝑜𝑟 0.5 < 𝐻(𝑃) < 1 

where 𝑃 is the cumulated precipitation for the given time-scale, 𝐻(𝑃) is the cumulative 
probability of the observed precipitation and 𝑐0, 𝑐1, 𝑐2, 𝑑1, 𝑑2, 𝑐𝑑3 are mathematical 
constants. Table 3 presents the interpretation of the possible values of the SPI. 

SPI Description 

≥ 2.0 Extremely wet 

1.5 to 1.99 Very wet 

1.0 to 1.49 Moderately wet 

−0.99 to 0.99 Near normal 

−1.49 to −1.0 Moderately dry 

-1.99 to -1.5 Severely dry 

≤ -2.0 Extremely dry 

Table 3. Classification of the period according to the values of the SPI. 

As mentioned earlier, the SPI was designed to quantify the precipitation deficit for multiple 
timescales, or moving averaging windows (World Meteorological Organization, 2012). These 
time scales reflect the impact of a drought on different water resources needed by various 
decision-makers: meteorological and soil moisture conditions (agriculture) respond to 
precipitation anomalies on relatively short timescales (1-6 months), whereas streamflow, 
reservoirs, and groundwater respond to longer-term precipitation anomalies (6-24 months 
or longer): 

 1-month SPI: a 1-month SPI map is very similar to a map displaying the percentage of 
normal precipitation for a 30-day period. Its application can be related closely to 
meteorological types of drought along with short-term soil moisture and crop stress. 

 3-month SPI: the 3-month SPI provides a comparison of the precipitation over a 
specific 3-month period with the precipitation totals from the same 3-month period 
for all the years included in the historical record. A 3-month SPI reflects short- and 
medium-term moisture conditions and provides a seasonal estimation of 
precipitation. Looking at longer timescales can prevent misinterpretation believing 
that a drought might be over when in fact it is just a temporary wet period. 

 6-month SPI: the 6-month SPI indicates seasonal to medium-term trends in 
precipitation. A 6-month SPI can be very effective in showing the precipitation over 
distinct seasons. Information from a 6-month SPI may also begin to be associated 
with anomalous streamflows and reservoir levels, depending on the region and time 
of year. 
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 12-month up to 24-month SPI: the SPI at these timescales reflects long-term 
precipitation patterns. SPIs of these timescales are usually tied to streamflows, 
reservoir levels, and even groundwater levels at longer timescales. 

Rainfall anomaly Index (RAI) 

The Rainfall anomaly Index (RAI) was developed by Van Rooy (1965). The positive and 
negative RAI indices are computed by using the mean of ten extremes. Let �̅� be the mean of 
the ten highest precipitation records for the period under study, �̅� the mean precipitation of 
all the records for the period, and 𝑃 the precipitation for the specific year. Then the positive 
RAI (for positive anomalies) for that year is: 

𝑅𝐴𝐼 = 3 ∗
𝑃 − �̅�

�̅� − �̅�
 

Let �̅� be the mean of the ten lowest precipitation records for the period under study. Then 
the negative RAI (for negative anomalies) for that year is: 

𝑅𝐴𝐼 = −3 ∗
𝑃 − �̅�

�̅� − �̅�
 

The classification of the RAI is as follows: 

RAI Period 

≥ 3.00 Extremely wet 

2.00 to 2.99 Very wet 

1.00 to 1.99 Moderately wet 

0.50 to 0.99 Slightly wet 

-0.49 to 0.49 Near normal 

-0.99 to -0.50 Slightly dry 

-1.99 to -1.00 Moderately dry 

-2.99 to -2.00 Very dry 

≤ -3.00 Extremely dry 

Table 4. Classification of the period according to the values of the RAI. 

Deciles 

Arranging monthly precipitation data into deciles is another drought-monitoring technique. 
It was developed by Gibbs and Maher (1967) to avoid some of the weaknesses within the 
“percent of normal” approach.  

The technique divides the distribution of occurrences over a long-term precipitation record 
into tenths of the distribution. Each of these categories is called a decile. The first decile is 
the rainfall amount not exceeded by the lowest 10% of the precipitation occurrences. The 
second decile is the precipitation amount not exceeded by the lowest 20% of occurrences. 
These deciles continue until the rainfall amount identified by the tenth decile is the largest 
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precipitation amount within the long-term record. By definition, the fifth decile is the 
median, and it is the precipitation amount not exceeded by 50% of the occurrences over the 
period of record. 

Its classification is shown in Table 5. 

 

Class Percent Period 

Deciles 1-2 lowest 20% Much below normal 

Deciles 3-4 next lowest 20% Below normal 

Deciles 5-6 middle 20% Near normal 

Deciles 7-8 next highest 20% Above normal 

Deciles 9-10 highest 20% Much above normal 

Table 5. Classification of the period according to the values of the deciles. 

5.3 Characterization of a drought event 

We can define drought occurrence based on the values of the drought indices. 

According to McKee et al. (1993) a drought event is defined as a period in which the SPI is 
continuously negative and the SPI reaches a value of -1.0 or less. The drought begins when 
the SPI first falls below zero and ends with the positive value of SPI following a value of -1.0 
or less (Figure 3). The event ends when the SPI becomes positive. This definition has been 
adopted and is used by the Joint Research Centre of the European Commission or by the 
National Drought Mitigation Center of the USA. 

Each drought event, therefore, has a duration defined by its beginning and end, and a 
drought magnitude which is the positive sum of the SPI for each month during the drought 
event. The intensity of a drought event is then defined as the magnitude of this event 
divided by its duration. 

 

Figure 3. Example of 3 drought events according to the SPI (source: Vogt et al.). 
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The criterion for defining an event has been extrapolated to the rest of the drought indices 
as follows: 

Index 
Lower limit 

(start of the drought event) 
Upper limit 

(end of the drought event) 

SPI -1 0 

PN 75 100 

RAI -1 0 

Deciles 40 60 

Table 6. Definition of the lower and upper limits of the indices defining the start and the end 
(respectively) of a drought event. 
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 Chapter 6. Interpolation methods 

6.1 Thiessen interpolation 

This method is also known under the names of Voronoi diagram. 

This is the simplest interpolation method for meteorological data, and uses the nearest 
available elevation data (ED) point as a reference, without performing any further 
adjustment on the data. The interpolated data at each time step thus has polygonial 
structure (Figure 4). 

 
Figure 4. Thiessen interpolation of measurement points (green) on interpolation points (other colors) 

Method 

The code is optimised for the situation in which the interpolation needs to be repeated 
numerous times with almost identical2 data configurations. 

1. First, a lookup table is generated that lists for each interpolation point the nearest 
measurement stations available, for the sensor of interest (P, T and ETP). The 
distance between points is estimated as the horizontal distance, without taking 
elevation changes into account: 

 
𝑑𝑖𝑗 = √∆𝑋2 + ∆𝑌2 

DS.1 

 Thanks to this lookup table, the distances only need to be calculated once. 
2. The program then loops through each time step and fetches for each interpolation 

point the data value from the reference measurement station, indicated by the first 
element of the lookup table for that station. 

                                                      

 

 
2
 Alterations can occur if measurement points are missing. 
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3. In the situation where one of the data points is missing, data from the next nearest 
measurement stations is used. 

 

It can be expected that this method runs faster than other interpolation methods. 

6.2 Inverse distance weighting interpolation 

Note: Shephard interpolation is a special case of inverse distance weighting. 

 

In this method, the weights are proportional to the inverse power of the distance between 
measurement stations and interpolation points. The user can choose between a power of 1 
and a power of 2. 

Method 

For this method, the idw function from the gstat package (Pebesma, 2004) for R (R 
Development Core Team, 2014) was used. The weight 𝑤𝑖𝑗 of the jth measurement station for 

the ith interpolation point is given by: 

 𝑤𝑖𝑗 =
1

𝑑𝑖𝑗
𝑝  DS.2 

Where 𝑑𝑖𝑗 is the 2D distance as defined in DS.1. The data estimation at the ith interpolation 

point 𝑥𝑖  is: 

 𝑥𝑖 =
1

∑ 𝑤𝑖𝑗𝑗
∑𝑤𝑖𝑗 × 𝑦𝑗
𝑗

 DS.3 

 

Where 𝑦𝑗 is the data measurement at the jth measurement station. 

When, for a given interpolation point, all measurement stations are relatively far away, the 
estimated value at the interpolation point tends towards the global average. 

6.3 Kriging 

For this method, the autokrige function from the automap package (Hiemstra et al., 2009) 
for R was used. This function automatically estimates the variogram and then calls the krige 
function from the gstat package (Pebesma, 2004) to do the actual kriging. 

Ordinary Kriging method 

Ordinary Kriging assumes that the random variable Z(s) to be estimated respects the model 

 
𝑍(𝑠)  =  µ(𝑠)  +  𝜀(𝑠) 

DS.4 
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Where µ(𝑠) is an unknown constant. Documentation on kriging can be found in Cressie 
(1993). 

Universal Kriging method 

When the option “remove trend with elevation data” is activated, Universal Kriging is used 
instead of Ordinary Kriging. The conceptual difference is that µ(𝑠) is assumed to be a 
deterministic function (of the elevation) and not an unknown constant. See Matheron (1993) 
for more details. 

The option of kriging with trend removal for precipitation was removed because in 
preliminary tests, the results proved unreliable (total volume about 3 times higher than for 
other methods). 
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 Chapter 7. Elevation sampling 

The user can provide elevation data that is necessary for certain interpolation methods 
(currently only the Universal kriging method). The elevation data (ED) is used to estimate the 
elevation at each interpolation point before the interpolation takes place. Because both the 
elevation data and the interpolation points are spatial points, the program uses a Gaussian 
sampling method to estimate the local elevation. The method aims to account for the fact 
that each interpolation point actually represents an area. 

Method 

This method relies on a Gaussian filter to estimate the local elevation of a point. The 
computation steps at each interpolation point are: 

1. Calculate distance of ED points to the current interpolation point. 
2. Calculate a weight for each ED point based on its distance. For this, a normal 

distribution function with standard deviation equal to twice the interpolation grid cell 
size is used. The weighting function used is: 

 𝑤𝑖𝑗 =
1

2∆𝑔√2𝜋
𝑒
−

𝑑𝑖𝑗
2

2(2∆𝑔)2  DS.5 

 
Where 𝒘𝒊𝒋 is the weight of the jthED point for the ith interpolation point, 𝒅𝒊𝒋 is the 

Euclidean distance in 2D space between those two points, and ∆𝒈 is the minimum 
distance between interpolation points. 
 

3. Do a weigted sum of the elevations 𝒉𝒋 of the ED to find an estimation of the 

elevation 𝒉𝒊 at the current interpolation point: 

 ℎ𝑖 =
1

∑ 𝑤𝑖𝑗𝑗

∑𝑤𝑖𝑗 × ℎ𝑗
𝑗

 DS.6 

As shown in the figures below, the use of a Gaussian filter smoothens the elevation 
estimation in comparison to block sampling, where the elevation is estimated by averaging 
DE data within a rectangular block around each interpolation point, thus introducing a 
strong sampling effect. 
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Figure 5. Elevation estimation by block sampling 

 
Figure 6. Elevation estimation with a gaussian 

filter 

Because the weighting function uses a standard deviation that is independent from the 
resolution of the DE data, the method will not work if DE points are much sparser than 
interpolation points: indeed, the weights rapidly fall to zero for all DE points further than 
𝟐∆𝒈 from the interpolation point. 
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 Chapter 8. Aggregation 

Once the measured time series are interpolated at each interpolation point, the data is 
aggregated: one time series is computed for each catchment. Each aggregated time series is 
computed by averaging the data of all interpolation points situated within the boundaries of 
each catchment (Figure 7). Each aggregated time series is associated to an “interpolated 
station” located at the center of gravity of the corresponding polygon. 

 
Figure 7. Mean aggregation of the interpolated temperature, by polygon. (left: interpolated data, 

right: aggregation of interpolated data) 
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